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The authors study an intermittent search process combining diffusion and “teleportation” phases in
a d-dimensional spherical continuous system and in a regular lattice. The searcher alternates
diffusive phases, during which targets can be discovered, and fast phases �teleportation� which
randomly relocate the searcher, but do not allow for target detection. The authors show that this
alternation can be favorable for minimizing the time of first discovery, and that this time can be
optimized by a convenient choice of the mean waiting times of each motion phase. The optimal
search strategy is explicitly derived in the continuous case and in the lattice case. Arguments are
given to show that much more general intermittent motions do provide optimal search strategies in
d dimensions. These results can be useful in the context of heterogeneous catalysis or in various
biological examples of transport through membrane pores. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2741516�

I. INTRODUCTION

Chemical kinetics in a dense medium is often controlled
by diffusion.1 In fact, the elementary reactive process should
be described on the microscopic level, by quantum mechan-
ics, but a classical, mesoscopic description is possible in the
simple case of diffusion-limited reactions:2 the reaction is
completed as soon as reactants meet �or with a given prob-
ability when they meet�.

In his pioneering work in 1917, von Smoluchowski3

used diffusion theory to calculate the rate of the diffusion-
limited annihilation or capture reaction P+A→A for one
spherical, immobile particle A, surrounded by particles P. He
found that the reaction rate k�t� is time dependent and criti-
cally depends on the space dimension d: for d=3, it tends at
large times to the finite rate constant k=4�RD, whereas for
d=1 and d=2 its limit value is 0. These well known results
have been extended in various directions,4–8 in particular, in
the case of N mobile P particles �catalysts or predators, in the
language of ecology� and one immobile A particle �target or
prey� with a fluctuating reactivity. These studies confirm that
the usual kinetic laws in general only hold in three dimen-
sions �or more�, and that even then they can break down, in
particular, in asymptotic regimes.4,6–10

A striking example where low-dimensional reaction
paths drastically modify usual reaction kinetics is given by
the problem of the localization of a protein at a specific tar-
get site on a DNA molecule. It is well established11 that the
reactive trajectories combine one-dimensional diffusion
along the DNA molecule and long range bulk excursions due
to association-dissociation events �see Ref. 12 for a review�.
In good agreement with experimental data,13 recent stochas-
tic models of this reaction13,14 have put forward the existence
of an optimal search strategy, achieved when both regimes

have the same mean duration �see also Refs. 15–19�, which
significantly accelerates the reaction. Such intermittent reac-
tion paths combining two regimes, a “slow” reactive motion,
during which the target can be discovered, and a “fast” but
nonreactive motion, during which the searcher is unable to
detect the target, have proved to play a crucial role in numer-
ous search problems.4,8,20–29

In practice, the effect of low dimension on reaction ki-
netics is important if the targets A are located on the bound-
ary �V of a domain V. The dynamics of a reactant P can then
be described in a very general way as intermittent, similar to
the above mentioned case of a protein reacting on a specific
site on DNA:P will alternate adsorbed phases on the interface
�V, where diffusional transport and reaction can occur, inter-
rupted by bulk phases of free motion in the interior of V
where targets A are absent. The case of a bidimensional
boundary �V is widely realized in chemistry in the case of
heterogeneous catalysis �see Fig. 1�, or in the physics of
porous media.30 Another example comes from physiology:
mammalian respiration can be described as 02 molecules �re-
actants P� diffusing in the gas exchange units of lungs, called
acini, toward their alveolar membrane, until they are ad-
sorbed through a membrane pore �a target A�. At a smaller
scale, cell biology provides further examples of such P+A
→A trapping reactions. Indeed, molecular �and, in particular,
ionic� transport across channels of the cell membrane31 or
even viral infection32 through the cell membrane involve a
searcher P �molecule or virus� alternating bulk diffusion in
the intercellular medium and adsorbed phases on the cell
membrane before entering the cell through a “gate” A �chan-
nel or membrane receptor, see Fig. 1�.

In this article, we present a model of intermittent search
process which generalizes our one-dimensional model of
protein search on DNA,14 later generalized by Eliazar et al.33

This model applies, in particular, in studying the above men-
tioned reactions of type P+A→A or the catalytic reactiona�Electronic mail: suet@lptmc.jussieu.fr
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P+A→C+A, where A are immobile targets located on a
d-dimensional space �=�V. A mobile molecule P diffuses in
� and interacts with an A as soon as it reaches it. However,
at stochastic times, P is desorbed from � and performs a
bulk excursion inside V �where no A is present� before read-
sorbing on � and diffusion again. The main hypothesis of
our model is to treat these bulk excursions as “teleportation”
phases: we assume that P is randomly relocated in � after an
exponentially distributed time or, more generally, after a sto-
chastic time with a finite average, independent of this dis-
placement �see Ref. 34 for related models�. Keeping in mind
the example of heterogeneous catalysis where � is a two-
dimensional plane, a teleportation is an approximate of a
three-dimensional diffusive excursion in the bulk in the fol-
lowing limit �Fig. 1�: the volume V must be finite to ensure a
finite mean return time �as opposed to power law distribu-
tions obtained for infinite V�, and the typical distance cov-
ered during such a bulk phase must be larger than the typical
intertarget distance to ensure that return locations are effec-
tively uncorrelated. Note that a finite accessible volume V
can be realized by a confining attractive potential �electro-
static for instance� toward the interface �. The net gain of
such intermittent behavior is not clear, since teleportation is
time consuming but, in principle, unproductive since no re-
action can occur during such phases. We shall, however, treat
this problem explicitly and show that intermittence permits
one to minimize the time of first arrival of P at A �or search
time� and thus, to hasten the reaction and increase the reac-
tion rate. First, we present our d-dimensional continuous
model, solve the corresponding equations, and compute the
average search time of A. We treat the optimization problem
and show that the search can be made much shorter, thanks
to intermittence. Then, we consider a similar lattice model
and prove that the optimization is also possible, but that the
conditions for obtaining it can be significantly different.
Eventually, we show that the conclusions can be extended to
much more general stochastic search processes in an arbi-
trary d-dimensional space.

II. CONTINUOUS DIFFUSION IN A SYSTEM WITH
SPHERICAL SYMMETRY

A. Model

We consider a point P searching for a given, immobile
target. P moves in a finite region of a d-dimensional space,

represented by a d-dimensional sphere B of radius b with a
reflecting internal surface. The target is a concentric sphere A
of radius a�b �Fig. 2�. However, the searcher can only rec-
ognize the target when his sensors are activated. In fact, the
searcher undergoes an intermittent movement, alternating be-
tween two dynamical regimes i=1,2.

�1� During regime 1 �diffusion�, he performs an isotropic
diffusion, and its sensors are activated: he finds the tar-
get as soon as he reaches it in this regime.

�2� During regime 2 �teleportation�, the searcher is relo-
cated with uniform probability at any point of sphere B.
During the teleportation, however, his sensors are inac-
tivated and the target cannot be found.

The duration Ti of each regime i is a stochastic variable
independent of other events, with an exponential law:

P�Ti � t� = exp�− �it� , �1�

with i=1,2, the frequencies �i being constant parameters.
The question is to find the optimal strategy—if any—to

reach the target as rapidly as possible.

FIG. 1. Heterogeneous catalysis �left� and transport through a cell membrane �right� as an intermittent search process. The reactant �searcher P� freely diffuses
in a three-dimensional confined volume �gray path� until it reaches the two-dimensional planar or spherical interface, where it remains adsorbed and diffuses
during a random waiting time �black path�, before desorbing back to the bulk. The process is continued until P reaches a target A �dark circles�.

FIG. 2. Intermittent search with teleportation. Searcher, point P; target,
sphere A with radius a; search domain, sphere B with radius b.
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B. Mean search time

In this problem, a basic variable is the search time Tx,
i.e., the first arrival time Tx of P at the target A in regime 1,
starting from the initial position x. Let F�t �x� be its probabil-

ity density, and F�t�= �F�t �x��B its average over the uniform
initial distribution of P in volume B. It can be shown �see
Sec. IV and Ref. 4� that the Laplace transform of F�t�,
F̂�s�=�0

�dte−stF�t�, is given by

F̂�s� =
�j1
˜��1 + s�x��B + v�A�/v�B�

1 − �1 − v�A�/v�D� − �j1
˜��1 + s�x��B�/�1 + s/�1��1 + s/�2�

, �2�

where A is the space occupied by the target, B the total
available space, and v�A� and v�B� are the respective vol-
umes of these regions.

Here j̄ is the Laplace transform of the first arrival density
which is given35 by

j1
˜��1 + s�x� = 	 r

a

� D�,−�r���1 + s�/D,b���1 + s�/D�

D�,−�a���1 + s�/D,b���1 + s�/D�
,

�3�

where r= �x� and D�,−�x ,y�= I��x�K�−1�y�+K��x�I�−1�y�. I��x�
and K��x� are modified Bessel functions36 with

� = 1 −
d

2
. �4�

After lengthy calculations �see Appendix A�, we obtain

F̂�s� =
− k�Y�/X�� + ad/bd

1 − �1 − ad/bd + k�Y�/X���/�1 + s/�1��1 + s/�2�
,

�5�

with

k =
d

bd	 D

�1 + s

1/2

ad−1 �6�

and

X̄� = K�−1	b��1

D

I�	a��1

D



+ K�	a��1

D

I�−1	b��1

D

 , �7�

Ȳ� = K�−1	b��1

D

I�−1	a��1

D



− K�−1	a��1

D

I�−1	b��1

D

 . �8�

The mean time �T� is a relevant quantity to characterize
the efficiency of the searcher. It is obtained from the deriva-
tive of the first passage density:

�T� = − 	 �F̂�s�
�s



s=0

, �9�

which yields

�T� =
�1 + �2

�1�2

��b/a�d − 1�X̄� + �d/a��D/�1Ȳ�

X̄� − �d/a��D/�1Ȳ�

. �10�

This exact, explicit formula �10� is most useful for mini-
mizing the mean search time as a function of the parameters,
which is an important point in most practical cases. Since a,
b, and D are determined by the geometrical and physical
properties of the medium, the relaxation frequencies �1 and
�2, or the mean durations �1=1/�1 and �2=1/�2 of phases 1
and 2, are the main adjustable parameters.

C. Optimization of the mean search time

The optimization with respect to �2 is obvious: the time
lost in teleportation should be as short as possible, since the
result is independent of it, so that �2 should be as high as
possible. We now consider the minimization of �T� with re-
spect to �1. From expression �10�, the mean search time can
be written as

�T� =
�1 + �2

�1�2

��b/a�2 − 1� + 2�Z�x�/x�
1 − 2�Z�x�/x�

, �11�

with Z�x�=−K�−1�x� /K��x� and x=a��1 /D.
The analysis of the exact expression �11� has been

treated numerically in the important cases of two and three
dimensions �Figs. 3 and 4�.

It is seen that two cases can occur: for small values of
�2, �T� increases with �1, and the minimal value is obtained
by choosing �1=0, or �1=�, thus having an uninterrupted
diffusive regime. Then, intermittence is not favorable to the
search and should be avoided. On the other hand, for large
values of �2, �T� decreases with �1 for small �1, it has a

minimum for a finite value �1̄ of �1, and it increases for �1

��1̄. Then, intermittence is favorable to the search and it
allows reducing the search time substantially.

The critical value �2c separating these regimes can be
obtained explicitly, depending on the dimension d. It is given
by simple expressions in the usual case b /a	1. In two di-
mensions,
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�2c �
96D ln�b/a�

7b2 when b 	 a . �12�

In three dimensions,

�2c �
35D

12ab
when b 	 a . �13�

If �2��2c, the optimal value �1 of �1 can be computed
numerically. It is also possible to obtain simple approxima-
tions in specific situations. Such a situation occurs in the
important case of the small density limit, which is currently
observed.

Small density limit. We now assume that the volume of
the search region B is much larger than the volume of the

FIG. 3. �T� as a function of �1 in the two-dimensional case. �a� �T� minimum for �1=0 with a=1, b=103, d=2, D=1, and �2=10−5. �b� �T� minimum for a
finite �1 with a=1, b=103, d=2, D=1, and �2=10.

FIG. 4. �T� as a function of �1 in the three-dimensional case. �a� �T� minimum for �1=0 with a=1, b=103, d=3, D=3, and �2=10−5. �b� �T� minimum for
a finite �1 with a=1, b=103, d=3, D=3, and �2=10.
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target A :bd	ad. Furthermore, we suppose that b2	D /�1,
which implies that the average fraction of B explored during
a single diffusive phase is very small. Then,

Z�x� � −
K�−1�x�
K��x�

. �14�

On the other hand, we may assume that b is large enough
to satisfy

	b

a

b

	 d
Z�x�
x

 . �15�

Then, formula �10� simplifies very much and allows for
a simple analytical optimization of �T� in the cases of short
and long waiting times. As we proceed to show, condition
�12� or �13� is compatible with both cases, leading to a non-
trivial optimization of the search time for �2 fixed.

Short waiting times. Let us first consider the case x
=a��1 /D	1, or �1	��a2 /D. Then, Z�x��−1, inequality
�15� clearly holds, and the exact formula �10� can be ap-
proximated by

�T� �
1

2
	b

a

d�1 + �2

�1�2

x

x + d
. �16�

It is easily found that this expression reaches its minimal
value if

�1 = �2�1 +
2

d
��1a2

D
� . �17�

Then, the assumption x=a��1 /D	1 implies that
a��2 /D	1 and the optimal value �1 of �1 is

�1 � 	2

d

2a2

D
�2

2. �18�

In other words, this case applies when the waiting times
�1 and �2 are both much smaller than the characteristic time
��a2 /D: when the optimal value of �1 scales as �2

2, we have
�1
�2
� and

�1

�
� 	d

2

2	 �2

�

2

. �19�

It should be remarked that in this case, the searcher
spends more time in teleportation, although he cannot find
the target in this regime, than in diffusion. This counterintui-
tive result had also been noticed in the case of alternating
diffusion with ballistic motion.20 Then, the minimum search
time is simply

�T�min =
1

2
	b

a

d

�2. �20�

These results hold in any dimension d. Thus, �T�min has
its effective smallest value when �2 has its minimum possible
value �2min, as it has been already pointed out.

The efficiency of intermittence can be characterized by
the ratio E= �T�diff / �T�min, �T�diff being the search time in a
purely diffusive regime �Appendix C�. It is found that if b
	a, in one, two, and three dimensions, E has the respective
values

E = ��2/3��ab/D�2� = �2/3��b/a���/�2� if d = 1

�a2/D�2�ln�b/a� = ln�b/a���/�2� if d = 2

�2/d�d − 2����/�2� if d � 3.
� �21�

Thus, E is much larger than 1 if �2
� and, in one and
two dimensions, b /a	1. The latter enhancement factor dis-
appears in three or higher dimensions. As a conclusion, in
the limit of short waiting times �2, or high frequencies �2, the
efficiency is proportional to �2 in any dimension, as con-
firmed by numerical analysis �Fig. 5�. It is clear that the
efficiency of intermittence depends on the minimum possible
value �2min, and that it decreases as dimension d increases.
Nevertheless, intermittence can always be a favorable search

FIG. 5. Plots of efficiency E= �T�diff / �T�min as a function of �2. �a� Two dimensions with a=1, b=103, d=2, and D=1. �b� Three dimensions with a=1, b
=103, d=2, and D=1.

FIG. 6. One-dimensional lattice.

234109-5 Intermittent search and teleportation J. Chem. Phys. 126, 234109 �2007�

Downloaded 20 Jun 2007 to 134.157.8.51. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



strategy if �2 can be made sufficiently small, and if the mini-
mum realizable value of �1��1min� allows one to reach the
optimal value �1.

Long waiting times. The opposite limit of long waiting
times, when both �1 and �2 are much larger than �, is in
principle less favorable, and conditions �12� and �13� impose
upper bounds on �2 for intermittence to be favorable. Never-
theless, these conditions can be satisfied even with �2	�,
and the case of long waiting times may allow one to mini-
mize the search time for a finite value of �1. This case is
observed in practice if the characteristic time �, which is
imposed by physical conditions, is much shorter than �1min

and �2min. It is shown in Appendix C that in this situation
intermittence again allows one to reduce the search time sig-
nificantly in one and two dimensions, but this strategy loses
its interest in higher dimensions. More precisely, in one di-
mension, the optimal value of �1 is

�1 � �2 �22�

so that �1��2
�: both waiting times should be equal, which
was indeed the result found in Ref. 20 concerning the search
of specific DNA site by a protein.

Furthermore,

�T�min �
2b
�D

��2 �23�

and the efficiency is

E =
2

3

b
�D�2

=
2

3

b

a
� �

�2
. �24�

Here �� /�2�1/2
1, but the large factor b /a can allow the
efficiency to be much larger than 1. In Two dimensions, the
optimal value of �1 is

�1 =
�2

ln����1 −
ln���

�
� , �25�

with �= �ln�a2�2 /D��, corresponding to the minimum search
time

�T�min �
b4

4D
�� + ln���� , �26�

and the efficiency of intermittence is

E �
ln�b2/a2�
ln��2/��

. �27�

It can still be large for large values of b /a.
However, in three or more dimensions, it is shown that

the efficiency cannot be significantly larger than 1 if �2��:
then, intermittence is only an interesting search strategy if
�2
�.

Part of the conclusion of this section is extended quali-
tatively to more general situations in Sec. IV.

III. DISCRETE SYSTEMS

We now assume that the searcher P moves on a regular
lattice.

A. One-dimensional lattice

Consider N=2L+1 equally spaced lattice points on an
axis 0x. �Fig. 6� Between coordinates −L and L a target is
located at coordinate 0. The searcher P now switches be-
tween two dynamic regimes.

�i� During regime 1, P performs a continuous time ran-
dom walk between points −L and L which are reflect-
ing points, whereas A is absorbing. The transition rate
from one lattice point x to any of its next neighbours
is p /2.

�ii� During regime 2, or teleportation, P is randomly relo-
cated on any lattice points in �−L ,L�.

�iii� The duration Ti of regime i �i=1,2� is an exponential,
independent, variable.

Mean search time. Formula �2� still applies and gives the
Laplace transform of the search time density:

FIG. 7. �T� as a function of �1 in the one-dimensional lattice case. �a� �T� with L=100, p=1, and �2=0.0001. �b� �T� with L=100, p=1, and �2=0.1. �c� �T�
with L=100, p=1, and �2=1.
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F̂�s� =
�j1�s�x�� + 1/�2L + 1�

1 − �1 − 1/�2L + 1� − �j1�s�x���/�1 + s/�1��1 + s/�2�
,

�28�

where �j1�s �x�� is the Laplace transform of the search time
density in regime 1, average on the initial position x. Using
Montroll’s paper37 and Hughes’ book38 in continuous time, it
is found that

�j1�s�x�� =
1

N
� 1

�1 − p/�p + s��P�0,p/�p + s��
− 1� , �29�

where P�0,z� is the generating function for all walks which
start and end at the origin.

P�0,z� =
1

N
�
k=0

N−1
1

1 − z cos�2�k/N�
=

1 + xN

1 − xN

1
�1 − z2

, �30�

with

x =
1

z
�1 − �1 − z2� . �31�

Eventually, after straightforward but lengthy calculations, �T�
writes

�T� =
�1 + �2

�1�2

2L��1 + p − 
��
2L+1 + p2L+1� − p�p + 
��p2L − 
2L�
�2p + �1��p2L+1 − 
2L+1�

, �32�

with 
=�1+ p−��1
��1+2p.

Optimization of the mean search time. It can be seen that
�T� can have three possible behaviors as a function of �1

�Fig. 7�.

�i� If p /�2�2L / �2L+1�, �T� increases continuously with
�1, and �T� is minimum if �1=0.

�ii� If 2L / �2L+1�� p /�2� �2/15��3+L+L2�, �T� is mini-
mum for a finite value �1 of �1.

�iii� If p /�2� �2/15��3+L+L2�, �T� decreases with �1 and
the minimization of the search time requires choosing
�1 as large as possible.

It may be noticed that with condition �iii�, �T� decreases
with �1 to a lower bound. Then, intermittence is always fa-
vorable. This is the main difference with the continuous
model where this situation cannot occur. We will see in Sec.
V that this behavior can be observed in more general inter-
mittent systems with teleportation, but not if the search re-
gime 1 is diffusive.

Small density limit. For L→�, �T� can be approximated
by

�T� = 2
�1 + �2

�1�2

1
�1 + 2�p/�1�

L �33�

In this limit, condition �iii� cannot be satisfied, but one
can obtain a minimum search time for a finite value of �1, if
p��2.

Then, the optimal value of �1 is given by

�1 =
p

p − �2
�2. �34�

If p	�2, the random walk is approximately a diffusion
and one finds that �1��2, as in the one-dimensional continu-
ous case.

B. Two-dimensional lattice

For a simple random walk on a square lattice of m�m
=N points, we have37,39

P�0,z� =
1

m2 �
k1=0

m−1

�
k2=0

m−1
1

1 − �1/2��ck1
+ ck2

�
, �35�

with ck=cos�2�k /m�0�z�1,
or

P�0,z� =
1

m
�
k=0

m−1
1

1 − �1/2�zck

1

1 − �k
2

1 + xk
m

1 − xk
m , �36�

where �k=z�2−zck� and xk= �1− �1−�k
2�1/2��k

−1.
It is found numerically that the three situations described

in Sec. III A can occur �Fig. 8�.

�i� For very small values of �2 �with respect to p�, �T�
continuously increases with �1, and it is minimum for
�1=0: intermittence is not favorable.

�ii� For intermediary values of �2, �T� is minimum for a
finite value �1 of �1.

�iii� For large values of �2, �T� decreases with �1 and the
search is optimized by taking �1 as large as possible.
Because of the complexity of analytical formulas, it is
difficult to give precise conditions for observing these
situations.

In case �ii�, numerical calculations of the optimal value
�1 show that it can be approximately estimated by formula
�25� of the two-dimension case when p→�.

IV. MEAN SEARCH TIME: GENERAL RESULTS

The intermittent motion of a point searcher alternating a
slow motion �regime 1�, which allows for the detection of an
immobile target, and a fast motion �regime 2� without detec-
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tion can be formulated more generally when the search re-
gion is any d-dimensional finite volume B and the target is a
subvolume A included into B. General conclusions can be
obtained although specific models are necessary to get ex-
plicit formulas. We now describe this general formalism.

Search regime 1. During this regime, the target is found
as soon as P is in B. q1�t �x� is the survival probability of the
target at time t under regime 1, starting from x.

The duration T1 of regime 1 is an exponential stochastic
variable, independent of other events,

P�T1 � t� = e−�1t. �37�

Thus, the probability density that regime 1 finishes at
time t without discovering the target is

p̄1�t�x� � �1e−�1tq1�t�x� . �38�

Move regime 2. During this regime, P is redistributed in
volume B with a given stationary density p0�y�, independent
of its initial position x and of the duration of this regime.
Teleportation corresponds to the special case of a uniform
stationary density. The duration T2 of regime 2 is a stochastic
variable, independent of other events, not necessarily expo-
nential in a general case. We denote its probability density
�2�t�=−d�2�t� /dt, �2�t� being the survival probability of re-
gime 2 after a time t.

Overall survival probability. The overall survival prob-
ability of P at time t, starting at time 0 from position x�B
−A, and knowing that P has previously experimented 2n re-
gime changes at times 0� t1� t2� ¯ � t2n� t, is clearly
given by

S2n�t�x,t1, . . . ,t2n� = �
x2k�B−A

dx2 ¯ dx2n,

p̄1��1�x�p̄1��3�x2�p0�x2� . . . q1���x2n�p0�x2n� , �39�

with �1= t1, �i= ti− ti−1, and �= t− t2n.
Multiplying by p0�x� and integrating over the initial po-

sition x yields the average survival probability,

S2n�t�t1 ¯ t2n� = � �
1�k�n

p̄1��2k−1��q1��� , �40�

where p̄1���=�x�B−Adxp̄1�� �x�p0�x� and q1���
=�x�B−Adxq1�� �x�p0�x�.

Thus, the average probability that P survives at time t
after 2n regime changes is

S2n�t� = �
�1+¯+�2n+1=t

�
1�k�n

�d�2ke
−�1�1�

� �
1�k�n

�d�2k�2��2k��e−�1�2kS2n�t�t1, . . . ,t2n� , �41�

and its Laplace transform is

S̃2n�s� = ��1q̃1�s + �1��nq̃1�s + �1���̃2�s��n, �42�

where q̃1�s� and �̃2�s� are the Laplace transforms of q1�t� and
�2�t�. Similarly, it is found that the Laplace transform of the
survival probability after 2n+1 regime changes is

S̃2n+1�s� = ��1q̃1�s + �1��n+1�̃2�s� , �43�

with �̃2�s�= �1− �̃2�s�� /s being the Laplace transform of
�2�t�, the survival probality of regime 2.

Summing Eqs. �42� and �43� over n yields the Laplace
transform of the overall survival probability of particle P:

S̃�s� =
q̃1�s + �1���1�̃2�s� + 1�
1 − �1q̃1�s + �1��̃2�s�

. �44�

In the case of a uniform stationary probability density
�teleportation�, we have

q̃1�s� =
1

v�B��x�B−A

dx
1

s
�1 − j̃1�s�x�� =

1

s
�� − � j̃1�s��B� ,

�45�

where j̃1�s �x� is the Laplace transform of the search time
density during regime 1, and � j̃1�s��B is its average on region
B. Furthermore, v�A� and v�B� are the volumes of A and B,
and �=1−
= �v�A�−v�B�� /v�B�.

FIG. 8. �T� as a function of �1 in the two-dimensional lattice case. �a� �T� with L=150, p=2, and �2=0.002. �b� �T� with L=150, p=2, and �2=0.2. �c� �T�
with L=150, p=2, and �2=200.
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As a result, if the initial density is uniform and if T2 is

exponential, the Laplace transform F̃�s� of the mean search
time density −�S�t� /�t is given by

F̃�s� =
� j̃1�s�x��B + 


1 − �1 − � j̃1�s�x��B − 
�/�1 + s/�1��1 + s/�2�
. �46�

Mean search time. The mean search time �T� is obtained
by taking s=0 in formula �44�:

�T� =
q̃1��1�

1 − �1q̃1��1�
	1 +

�1

�2

 , �47�

where we have noticed that �̃2�0�=1 if waiting time T2 is

finite with probability 1 and that �̃2�0�=�2�1/�2 is the
mean duration of regime 2. If �2 is infinite, the mean search
time is also infinite. Similar, more precise results are given in
Ref. 33 but are not used here.

Let us assume that the mean duration of regime 2 is
finite. �T� is obviously a decreasing function of �2, or an
increasing function of �2, so that �2 should be as small as
possible. It is clear that in practice the duration of regime 2
has some minimum realizable value �2min due to finite times
necessary for all actual operations. Thus, we henceforth as-
sume that the mean duration of regime 2 is �2 min, and we
now consider �T� as a function of �1.

Asymptotic behavior of �T� when �1→ +�. It is easily
seen that

�1q̃��1� = ��1 − � j̃1��1�x��B−A� , �48�

where �=�x�B−Adxp0�x� is the stationary probability that P
�B−A and � j̃1��1 �x��B−A=1/��x�B−Adxj̃1��1 �x�p0�x� is the

stationary average of j̃1��1 �x� normalized over B−A.
The behavior of j̃1��1 �x� when �1→� depends on the

behavior of j1�t �x� when t→0, and it is found that if the
search time density in regime 1 is finite for t=0, j1�0 �x�
=a1�x�, then �1q̃1��1����1− �a1�B−A /�1� when �1→� and

�T� �
1

�2

�

1 − �
�1 −

1

�1
	 �a1�B−A

1 − �
− �2
 + ¯ � . �49�

Thus, when �1→� the mean search time �T� tends to the
finite limit �� / �1−����2. Furthermore, unless a1�x�=0 for
any x�B−A, �T� tends to this limit by lower values pro-
vided that 1−�� �a1�x��B−A�2 �which is more easily satisfied
as the stationary probability 1−� of the target is very small�.

Case of diffusive regime 1. Formula �49� does not apply
if the search time density is not analytic at t=0, which is the
case for a diffusive regime 1. If, for instance, during regime
1 P performs a one-dimensional diffusion between an ab-
sorbing point a �the target� and a reflecting point b, we have
� j̃1��1��B−A�C�1

−1/2, where C can be a positive constant.
Then, when �1→�

�T� �
1

�2

�

1 − �
�1 −

1
��1

C

1 − �
+ ¯ � �50�

and �T� always tends to its limit by lower values. This can be
generalized to d-dimensional diffusion �see Appendix C�.

Behavior of �T� when�1→0. Expression �47� of �T� can be
written as

�T� =
�r̃1��1�

1 − �1�r̃1��1�
	1 +

�1

�2

 , �51�

where r̃1��1� is the Laplace transform of �q1�t��B−A, the av-
erage of the q1�t� over B−A. When �1→0, we have

�T� = �t1�1 − �1t1	1

2
	�1

t1

2

+
1

2
− � −

�2

t1

� , �52�

where t1��t1�x��B−A is the mean search time of the target A
in regime 1, averaged over B−A. Similarly, �1

2= �t1
2�x��B−A

− t1
2 is the corresponding variance.

When �1=0, �T� is just the mean search time �t1 if re-
gime 1 is maintained permanently. Thus, intermittence is
surely favorable either if �t1��2�� / �1−��� or if
���T� /��1��1=0�0.

The first condition is verified if

�2

t1
� 1 − � , �53�

which is always possible if the minimum possible value �2min

is small enough. Condition ���S� /��1��1=0�0 implies

�2

t1
�

1

2
	�1

t1

2

− � . �54�

Since �1 / t1�1, condition �54� can surely be realized for
small �2 if ��

1
2 , but in general, if the target is small, �

�1. Then, this condition implies that the fluctuations of the
search time in regime 1 should be large enough for the right
hand side of Eq. �54� to be positive. If this is the case, inter-
mittence is surely favorable is �2 min is sufficiently small.

If regime 1 is a three-dimensional diffusion, it can be
shown40,41 that ��1 / t1�2�2, so that conditions �53� and �54�
are identical. Assuming that Eq. �50� holds �Appendix C�, we
conclude that if the minimum value �2min is small enough to
satisfy Eq. �54�, the search time is minimized for a finite
value of �1. If �2 exceeds the critical value �2crit= �1−��t1,
intermittence is no longer generically favorable, and the
search time increases with �1 �unless some atypical mini-
mum exists far from �1=0�.

If the search time of regime 1 is regular at t=0, formula
�49� allows one to anticipate other behaviors, with, for in-
stance, �T� continuously decreasing with �1, as it is found
possible in the lattice model of Sec. III. These conclusions
show that the results of the previous sections can be qualita-
tively extended to much more general cases.

V. CONCLUSION

We have shown that a searcher, an animal or a molecule,
searching for a target which does not allow for remote de-
tection can have a reason to alternate regimes of slow, care-
ful scanning, with periods of random relocation, when it is
able to perform them. As in other intermittent behaviors,
alternating slow scanning periods with fast, nonreactive dis-
placements, the interest of such a strategy is not obvious and
it depends on the situation. We have obtained exact results
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and explicit conclusions in the special case when the slow
motion is a d-dimensional diffusion in a spherical system.
Then, it has been proved that intermittence can allow one to
reduce the search time considerably if the physical nature of
the searcher and of its environment makes possible the real-
ization of a very fast alternation of the two regimes, each one
with a very short mean duration, compared to a characteristic
time of the system. If this is the case, and if the mean dura-
tions of both regimes satisfy certain scaling laws, the search
time can be much shorter than in a purely diffusive regime,
although the efficiency of intermittence decreases when the
dimension increases. If the mean durations of the phases can-
not be shorter than the characteristic time of the system, the

situation is less favorable. Nevertheless, intermittence can
still be an efficient strategy in one and two dimensions, but
this is not always the case in higher dimensions. These ex-
plicit results can be partly generalized for much more general
intermittent systems including teleportation, and it can still
be concluded that intermittence can allow one to increase the
efficiency of the search considerably, although obviously not
in all cases. Thus, such a behavior can play an important role
in chemical kinetics, especially in low-dimension systems,
when the reagent can perform temporary excursions to a
higher-dimension phase, which allow a fast relocation, as it
has been shown in the special case of protein search of spe-
cific target on DNA.14,33
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APPENDIX A: CALCULATION OF Šj̃„�1+s �x…‹B

We proceed here to the calculation of � j̃��1+s �x��B from formulas �2� and �3�.

� j̃��1 + s�x��B = �
v�B�

j̃��1 + s�x�
dr

v�B�
=

2�1 − ��
b2�1−��

1

a�

1

I��ã�K�−1�b̃� + K��ã�I�−1�b̃�

��K�−1�b̃��
a

b

drr1−�I��r̄� + I�−1�b̃��
a

b

drr1−�K��r̄�� .

The latter integrals can be evaluated explicitly,

�
a

b

drr1−�I��r̄� = 	 D

�1 + s

1−�/2�

ã

b̃
duu1−�I��u� = 	 D

�1 + s

1−�/2

�b̃1−�I�−1�b̃� − ã1−�I�−1�ã�� ,

�
a

b

drr1−�K��r̃� = 	 D

�1 + s

1−�/2�

ã

b̃
duu1−�K��u� = 	 D

�1 + s

1−�/2

�ã�−1K�−1�b̃� − b̃�−1K�−1�ã�� .

Eventually, this allows us to compute analytically

� j̃��1 + s�x��B = �
v�B�

j̃��1 + s�x�
dr

v�B�
=

2�1 − ��
b2�1 − ��

1

D�,−�ã, b̃�

1

a��K�−1�b̃�	 D

�1 + s

1−�/2

�b̃1−�I�−1�b̃� − ã1−�I�−1�ã�� + I�−1�b̃�

�	 D

�1 + s

1−�/2

�ãK1−��ã� − b̃1−�K1−��b̃���
=

2�1 − ��
b2�1−�� a1−2�	 D

�1 + s

1/2K�−1�ã�I�−1�b̃� − I�−1�ã�K�−1�b̃�

K�−1�b̃�I��ã� + K��ã�I�−1�b̃�
� − k

Y�

X�

,
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with k= �dad−1 /bd��D /�1+s�1/2.

APPENDIX B: OPTIMIZATION IN LONG WAITING TIME
LIMIT

In this limit �1	�=a2 /D, or x=a��1 /D
1, we have,
with notations of Sec. II,

Z�x� = −
K�−1�x�
K��x� �=− 1 in d = 1

�− 1/x ln�x� in d = 2

�− �a − 2�/x in d = 3.
� �B1�

Thus, in order that Eq. �15� is satisfied, x should not be less
than a lower bound x depending on b /a, which we assume.
On the other hand, we have when �1→0

�T�diff = �b2/3D = �1/3��b/a�2� in d = 1

�b2/2D�ln�b/a� = �1/2��b/a�2 ln�b/a�� in d = 2

bd/d�d − 2�Dad−2 = 1/d�d − 2��b/a�d� in d � 3.
�

�B2�

In one dimension, calculations are the same as in the
short time limit and the optimal value of �1 satisfies Eq. �17�,
but now x
1, so that

�1 � �2 �B3�

and �1��2
�.
The minimum value of �T� is given by

�T�min �
2b
�D

��2 �B4�

and the efficiency is

E =
�T�diff

�T�min
=

2

3

b
�D�2

=
2

3

b

a
� �

�2
. �B5�

In two dimensions, we know that intermittence can only be
favorable if condition �12� holds. In this case,

�T� �
1

2
	b

a

1/2�1 + �2

�1�2
x2�ln�x��

=
b2

2D
	1 +

�1

�2


ln	a��1

D


 . �B6�

If �2��2c, the optimal value �1 of �1 satisfies

��T�
��1

�
�1

�1 + �2
+

1

2 ln�x�
= 0, �B7�

which implies

x2�ln�x2�� =
a2�2

D
� c2 �B8�

and c
1. Eventually, one obtains

�1 �
�2

�log�a2��2/D����1 −
log�log�a2��2/D���

�log�a2��2/D��� � �B9�

so that �1
�2 and �1	�2	�.
Numerical analysis of the exact formulas shows that

these approximations are very accurate in these situations,
the relative error being of order 10−3.

Inserting this value into Eq. �B6� and taking Eq. �B8�
into account, we find the minimum search time

�T�min �
b2

4D
�� + ln��� + 1 + ¯ � , �B10�

with �= �ln�c2��= �ln�a2�2 /D��.
From Eqs. �B1� and �B2� it is seen that the efficiency of

intermittence is now

E � 2
ln�b/a�
ln�c2�

=
ln�b2/a2�
ln��2/��

. �B11�

It is much larger than 1 if condition �15� is satisfied, since we
have

D�2

a2 �
7

96

b2/a2

ln�b/a�



b2

a2 . �B12�

Eventually, in three dimensions, we have

Z�x� � −
K3/2�x�
K1/2�x�

= −
x + 1

x
, �B13�

which holds for any x=a��1 /D, and

�T� �
b3

3Da
	1 +

�1

�2

 1

1 + a��1/D
. �B14�

The optimal value of �1 in three dimensions is then

�1 =
D

a2�− 1 +�1 +
a2�2

D
�2

. �B15�

It yields the minimal search time for any �2 or �2,

�T�min =
b3

Da

1

1 + �1 + �2a2/D
. �B16�

The condition x�a��1 /D
1 implies a��2 /D
1 and

�1 �
1

4

a2

D
�2

2 or
�1

�
�

1

4
	 �2

�

2

. �B17�

Then, �
�2
�1, and �1 scales as �2
2, as found in Eq. �18�,

and we have

�T�min �
b3

3Da
=

b3

3a3� . �B18�

The efficiency is now

E =
1

2
	1 +�1 +

�

�2

 � 1. �B19�

Once more, it increases if �2 decreases, but if �2	�, it is
approximately 1.

In any case, the efficiency is not significantly higher than
1 if �2��, and intermittence is hardly useful in such a situ-
ation. It can be seen similarly that if �2�� intermittence is
not a favorable search strategy in dimensions d�3.

APPENDIX C: MEAN SEARCH TIME OF THE TARGET
IN A DIFFUSIVE REGIME

Assume point P performs an ordinary diffusion along
axis 0x, between the absorbing point x=0 �target� and the
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reflecting point x=L. The probability density p1�t �x� of the
first absorption time T�x� of P, starting from x at time 0,
satisfies the diffusion equation

�

�t
j1�t�x� = D

�2

�x2 j1�t�x� , �C1�

with the initial value j1�0 �x�=0 if x�0 and the boundary
condition j1�t �0�=��t�, ��� /�x�j1�t �x��x=L=0.

The Laplace transform j̃1�s �x� of j1�t �x�, satisfying the
corresponding boundary condition, is given by

j̃1�s�x� =
cosh��s/D�x − L��

cosh��s/DL�
. �C2�

Averaging with the uniform density on �0,L�, one ob-
tains

L� j̃1��s� =�D

s
tanh�� s

D
L� � 	 s

D

−1/2

if L� s

D
	 1. �C3�

The last result can be obtained by computing the density
of the first arrival time at 0 as computed for the infinite
semiaxis 0x.

Relation �C3� can be extended to a point P performing a
d-dimensional diffusion inside a closed volume B containing
an absorbing subvolume A, representing a target. P starts
from any position x�B−A. It is absorbed as soon as it
touches the boundary �A of A, whereas it is reflected when it
touches the boundary �B of B. The Laplace transform of the
first absorption time density of P satisfies the equation

s j̃1�s�x� = D
�2

�x2 j̃1�s�x� �C4�

�where � /�x and �2 /�x2 represent the gradient and the La-
placian, respectively� with the boundary conditions

j̃1�s�x� = 1 if x � �A, �C5�

d�B ·
�

�x
j̃1�s�x� = 0, �C6�

If x��B and if d�B
is the normal to �B.

Assuming that the stationary probability distribution is
uniform, we consider the average

� j̃1�s�x��B−A � �
x�B−A

dxj1�s�x� � I�s� . �C7�

From Eqs. �C4�–�C6� it is seen that I�s� satisfies

sI�s� = D��
�B

d�B ·
�

�x
j̃1�s�x� − �

�A

d�A ·
�

�x
j̃1�s�x��

= − D�
�A

d�A ·
�

�x
j̃1�s�x� , �C8�

where d�S is the vector surface element of �S, with S=A or
B. Let xA be a point of �A and x be a point of B−A in the
neighborhood of xA. We define the new function

q�y� = j̃1	s�x0 + 	 s

D

−1/2

y
 , �C9�

with y= �s /D�1/2�x−xA�.
It satisfies

q�y� =
�2

�y2q�y� , �C10�

with the boundary conditions

q�y� = 1 if y � �A�, �C11�

d�B� ·
�

�y
q�y� = 0, �C12�

if y��B� and d�D�
is the normal to �B�, �A� and �B� being

the surfaces corresponding to �A and �B, respectively.
When s→�, �A� tends to the plane tangent to �A at xA,

whereas �B� is sent to infinity. In this limit, q�y��e−y, where
y is the component along the normal to �A at xA. Then,

�

�x
= 
� s

D

�

�y
q�y�


y=0
�� s

D
, �C13�

and it results from Eq. �C8� that I�s�� �s /D�−1/2, which gen-
eralizes Eq. �C3�. Thus, the asymptotic value �50� of the
mean search time �T� when �1→� should apply to
d-dimensional diffusion and to any volumes A and B, at least
in the generic case �perhaps excluding also particular geom-
etries which could give specific results�.
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